

EM3E

ДРАЙВЕРЫ ШАГОВЫХ ДВИГАТЕЛЕЙ С ЕТНЕRCAT

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

СОДЕРЖАНИЕ

1.	Общая информация	2
1.1.	Сравнение протоколов управления EtherCAT и STEP/	DIR.2
2.	Характеристики	4
3.	Монтаж драйвера	5
3.1.	Правила установки	5
4.	Подключение драйвера	7
4.1.	Схема подключения и кабели	7
4.2.	Назначение выводов и описание разъемов	8
5.	Подключение входов/выходов	11
5.1.	Подключение входов	11
5.2.	Подключение выходов	13
5.3.	Выход тормоза	14
6.	Настройка EtherCAT ID	15
6.1.	Для драйверов ЕМ3Е-552/556/870	15
6.2.	Для драйверов ЕМ3Е-552Е /556Е/870Е	16

1. Общая информация

Драйверы шаговых двигателей серии EM3E поддерживают режимы управления CANopen over EtherCAT (CoE) и CiA 402, вместе с Profie Position (PP), Profie Veiosity (PV), Homing (HM) и Cyciic Synchronous Position (CSP). Поддерживается работа с большинством EtherCAT контроллеров и ПЛК таких брендов, как Leadshine, Beckhoff, Omron и других. Серия EM3E отличается повышенной надежностью, сверхнизким уровнем шума и наличием функции подавления резонанса на малых скоростях. Драйверы EM3E применяются в различных системах с ЧПУ и подходят для управления широким диапазоном шаговых двигателей (от 8 до 34 типоразмера NEMA).

Состав комплекта:

1. Ethercat-драйвер шагового двигателя Leadshine EM3E-522/556/870

Функциональные особенности:

- обеспечение низкого уровня шума и вибрации, плавности перемещений;
- режим управления CANopen over EtherCAT (CoE) с полной поддержкой CiA 402, 100Мб/с полный дуплекс;
- поддержка нескольких режимов работы: Profie Position (PP), Profie Veiosity (PV), Homing (HM) и Cyciic Synchronous Position (CSP);
- 5 цифровых входов, 2 оптоизолированных цифровых выхода, включая выходы ошибки и тормоза;
- защита от превышения напряжения, превышения тока, ошибки подключения;
- управление шаговыми двигателями NEMA 8, 11, 14, 17, 23, 24, 34.

Буква "Е" в конце названия - это обозначение бюджетного варианта драйвера. Так, драйверы EM3E-522E/556E/870E отличаются (в сравнении EM3E-522/556/870) наличием 6 настраиваемых цифровых входов (вместо 5), usb порта для настройки параметров и DIP-переключателей для настройки EtherCAD ID (вместо поворотных переключателей).

1.1. Сравнение протоколов управления EtherCAT и STEP/DIR

EtherCAT — промышленный стандарт технологии Ethernet, в котором скорость синхронизации измеряется в наносекундах. В этом заключается огромное преимущество для тех систем, которые управляются через шины данных. Стандартные сигнальные кабели при управлении по протоколу STEP/DIR имеют недостаточную защиту от электромагнитных помех. При подключении по EtherCAT используются экранированные кабели, защищенные от помех, со встроенным механизмом обнаружения ошибок. При управлении по протоколу STEP/DIR контроллер ЧПУ или ПЛК должны быть подключены к каждому драйверу. При использовании технологии EtherCAT достаточно подключения к одному драйверу, а затем последовательно - к другим. Кроме того, максимальное расстояние подключения по EtherCAT составляет 100 м. Топология подключений показана на рисунках ниже.

www.darxton.ru

Рис. 1. Топология подключения по протоколу STEP/DIR

Рис. 2. Топология подключения по протоколу EtherCAT

2. Характеристики

Табл. 1. Технические характеристики

Модель	EM3E-522	EM3E-556	EM3E-870		
Напряжение питания (постоянного тока), В	20-50	20-50	20-80		
Напряжение входов (постоянного тока), В	5-24 (рекомендуется 12-24) ток более 100 мА				
Напряжение выходов (постоянного тока), В	24 (максимально) ток не более 50 мА				
Выходной ток, А	0.5-2.2	2.1-7.0			
Входы	4 несимметричных и 1 дифференциальный частота управляющих импульсов 20/200/500 кГц				
Вводимые сигналы	ны Home Input, Positive Limit, Negative Limit, Touch Probe, Quick Stop и другие				
Выходы	2 оптоизолированных выхода (Brake, Alarm)				
Выводимые сигналы	Brake, Alarm, Master Station Control и другие				
Защита	От превышения тока, напряжения, скорости, ошибки подключения				
Настройка адреса шины	2 поворотных 16-битных переключателя				
Подходящие двигатели	NEMA 8, 11, 14, 17 NEMA 17, 23, 24 NEMA 23, 24, 34				
Размеры (В х Д х Ш), мм	118 x 90.4 x 34				
Вес, кг	0.57				

Табл. 2. Эксплуатационные характеристики

Рабочая температура, ^о С	от 0 до +50
Температура хранения, ^о С	от -20 до +65
Влажность воздуха, %	от 40 до 90
Установка	Вертикальная или горизонтальная

3. Монтаж драйвера

www.darxton.ru

Рис. 3. Габаритные размеры драйвера серии ЕМЗЕ

3.1. Правила установки

Неправильная установка может привести к неисправности драйвера или преждевременному выходу из строя драйвера и / или двигателя. Для предотвращения негативных последствий соблюдайте следующие правила монтажа:

- Устанавливайте драйвер в местах, не подверженных воздействию коррозионных или легковоспламеняющихся газов, а также горючих материалов.
- Устанавливайте драйвер в закрытом электрическом шкафу, изолированном от влаги и пыли, и не допускайте попадания прямых солнечных лучей.
- Устанавливайте драйвер перпендикулярно монтажной поверхности.
- Обеспечьте хорошую вентиляцию драйвера. Убедитесь, что все вентиляционные отверстия открыты и достаточно свободного пространства.
- Заземлите устройство и убедитесь, что провода заземления надежно подключены.

Рис. 4. Установочные размеры драйвера серии ЕМЗЕ

Рис. 5. Схема размещения драйвера серии ЕМЗЕ

4. Подключение драйвера

4.1. Схема подключения и кабели

UDarxton ЧПУ для всех Всё для ЧПУ

www.darxton.ru

Рис. 6. Типовая схема подключений

Требования к кабелю питания и кабелю подключения двигателя:

- Для кабелей +VDC, GND, A+, A-, B+, B- диаметр сечения должен быть ≥0.3 мм² (AWG15-22).
- Рекомендуется установить фильтр помех между источником питания и драйвером.

Требования к сигнальному кабелю ввода/вывода:

- Для кабелей I1- I4, I5+, I5-, C+, C-, O1, O2 диаметр сечения должен быть ≥0.12 мм² (AWG24-26).
- Рекомендуется использовать экранированную витую пару длиной до 3 м (лучше как можно короче).
- Для минимизации помех кабели ввода/вывода необходимо расположить максимально далеко от кабелей питания.

Требования к кабелю подключения Ethercat:

• Рекомендуется использовать Ethernet-кабель длиной до 100 м.

💧 Внимание!

- Не подключайте "на горячую" двигатель и энкодер при включенном драйвере.
- Проверьте соединения и убедитесь, что полярность напряжения в линии питания правильная.
- Убедитесь, что напряжение источника питания не превышает входного диапазона драйвера.
- При использовании двигателя с малым током измените выходной ток драйвера перед включением двигателя.
- Подождите 5 минут после выключения питания драйвера прежде чем переместить или переподключить его.

4.2. Назначение выводов и описание разъемов

www.darxton.ru

Рис. 7. Разъемы драйвера серии ЕМЗЕ

	paeberreb Aparibepa coprin El loc
Разъем	Назначение
CN1	Подключение напряжения питания
CN2	Подключение двигателя
CN3	Подключения входов/выходов
CN4	EtherCAT
SW1	Поворотные переключатели настройки адреса
SW2	

Табл. 3. Назначение разъемов драйвера серии ЕМЗЕ

4.2.1. Разъем CN1 (напряжение питания)

Вид	Пин	Сигнал	Описание
Ħ	1	VDC	"+" источника питания
2	2	GND	"-" источника питания

4.2.2. Разъем CN2 (двигатель)

Вид	Пин	Сигнал	Описание
	1	A+	Фаза А+ двигателя
4 3	2	B+	Фаза В+ двигателя
2 1	3	A-	Фаза А- двигателя
	4	В-	Фаза В- двигателя

4.2.3. Разъем СN3 (входы/выходы)

Вид	Пин	Сигнал	Описание
	1	01	Цифровой выход 1 с открытым коллектором, несимметричный, максимум 24 В / 50 мА, выход ошибки
97531	2	02	Цифровой выход 2 с открытым коллектором, несимметричный, максимум 24 В / 50 мА, выход тормоза
	3	C+	Вход 5 - 24 В подключения ПЛК
	4	C-	Общий
	5	11	Цифровой вход 1, несимметричный, высокий уровень 5 - 24 В, функция пробинга
	6	12	Цифровой вход 2, несимметричный, высокий уровень 5 - 24 В, функция поиска базы

Вид	Пин	Сигнал	Описание
	7	13	Цифровой вход 3, несимметричный, высокий уровень 5 - 24 В, функция положительного предела перемещения
	8	14	Цифровой вход 4, несимметричный, высокий уровень 5 - 24 В, функция отрицательного предела перемещения
	9	15+	Цифровой вход "+", дифференциальный, высокий уровень 5 - 24 В
	10	15-	Цифровой вход "-", дифференциальный, высокий уровень 5 - 24 В

4.2.4. Разъем CN4 (EtherCAT)

Вид	Пин	Сигнал	Описание
	1, 9	E_TX+	EtherCAT TxD+
	2, 10	E_TX-	EtherCAT TxD-
	3, 11	E_RX+	EtherCAT RxD+
	4, 12	/	-
	5, 13	/	-
	6, 14	E_RX-	EtherCAT RxD-
	7, 15	/	-
	8, 16	/	-
	Корпус	PE	Заземление

() LED1 – зеленый индикатор входящего соединения

LED2 – зеленый индикатор исходящего соединения

- LED3 зеленый индикатор передачи данных
- LED4 красный индикатор ошибки

4.2.5. Разъем Micro USB (для EM3E-522E/556E/870E)

Вид	Пин	Сигнал
□ , ^s	1	GND
	2	Резерв
	3	Data+
	4	Data-
	5	V_Bus

5. Подключение входов/выходов

5.1. Подключение входов

(i) В драйверах EM3E используются 2 типа входов: несимметричные и дифференциальные.

www.darxton.ru

Рис. 8. Схема подключения к несимметричным входам

Рис. 9. Схема подключения к дифференциальному входу

A

 Устройство управления (ПЛК, контроллер или плата управления) должно обеспечивать напряжение питания 12 - 24 В постоянного тока более 100 мА. Возможно использование напряжения питания 5 - 24 В.

2. При несоблюдении полярности подключения источника питания драйвер не будет работать.

Табл 4	Параметры настройки цифровых входов
14071. 4.	параметры пастроики цифровых входов

Адрес	Наименование	Доступ	Значение	Диапазон	Описание
2152+01	Функция 1 цифрового входа	R/W/S	32	0-32768	1: сигнал поиска базы; 2: положительный предел перемещения; 4: отрицательный предел перемещения; 8: аварийная остановка; 16: задается пользователем; 32: пробинг 1.
2152+02	Функция 2 цифрового входа	R/W/S	1	0-32768	1: сигнал поиска базы; 2: положительный предел перемещения; 4: отрицательный предел перемещения; 8: аварийная остановка; 16: задается пользователем; 32: пробинг 1.
2152+03	Функция 3 цифрового входа	R/W/S	2	0-32768	1: сигнал поиска базы; 2: положительный предел перемещения; 4: отрицательный предел перемещения; 8: аварийная остановка; 16: задается пользователем; 32: пробинг 1.
2152+04	Функция 4 цифрового входа	R/W/S	4	0-32768	1: сигнал поиска базы; 2: положительный предел перемещения; 4: отрицательный предел перемещения; 8: аварийная остановка; 16: задается пользователем; 32: пробинг 1.
2152+05	Функция 5 цифрового входа	R/W/S	16	0-32768	1: сигнал поиска базы; 2: положительный предел перемещения; 4: отрицательный предел перемещения; 8: аварийная остановка; 16: задается пользователем; 32: пробинг 1.
2153+01	Время фильтрации цифрового входа 1	R/W/S	1000 мкс	50-60000 мкс	Примечание: слишком продолжительное время фильтрации может привести к задержке
2153+02	Время фильтрации цифрового входа 2	R/W/S	1000 мкс	50-60000 мкс	поступления управляющих сигналов.
2153+03	Время фильтрации цифрового входа 3	R/W/S	1000 мкс	50-60000 мкс	
2153+04	Время фильтрации цифрового входа 4	R/W/S	1000 мкс	50-60000 мкс	
2153+05	Время фильтрации цифрового входа 5	R/W/S	1000 мкс	50-60000 мкс	
2154	Настройка рабочего уровня цифрового входа	R/W/S	0	0-65535	0: рабочий низкий уровень (по ум-ю); 1: рабочий высокий уровень (bit0 соответствует входу1 и так далее).

5.2. Подключение выходов

Рис. 10. Схема подключения к выходам

- При подключении напряжения питания 12 24 В постоянного тока необходимо соблюдать полярность во избежание повреждения драйвера.
 - 2. Ток на выходе с открытым коллектором должен быть ниже 50 мА, напряжение не должно превышать 24 В во избежание повреждения драйвера.
 - 3. Для предотвращения повреждения драйвера необходимо использовать защитный диод.

Табл. 5. Параметры настройки цифровых выходов

Адрес	Наименование	Доступ	Значение	Диапазон	Описание
2005+01	Функция 1 цифрового выхода	R/W/S	1	1-16	1: выход ошибки; 4: выход позиционирования; 8: выход тормоза; 16: подключение ведущего устройства.
2005+02	Функция 2 цифрового выхода	R/W/S	8	1-16	1: выход ошибки; 4: выход позиционирования; 8: выход тормоза; 16: подключение ведущего устройства.
2008	Уровень цифрового выхода	R/W/S	0	0-3	0: положительная логика; 1: отрицательная логика; Bit 0 соответствует выходу 1; Bit 1 соответствует выходу 2.

A

5.3. Выход тормоза

🛕 Внешнее реле и защитный диод должны быть подключены, как показано на схеме.

Табл. 6. Параметры настройки цифровых выходов

Адрес	Наименование	Доступ	Значение	Диапазон	Описание
4003	Время задержки отпуска тормоза	R/W/S	50 мс	1-16	Промежуток времени между рабочим состоянием и прекращением действия тормоза.
4004	Время задержки блокировки тормоза	R/W/S	50 мс	1-16	Промежуток времени между нерабочим состоянием и отключением ШИМ.

6. Настройка EtherCAT ID

6.1. Для драйверов ЕМЗЕ-552/556/870

UDarxton

www.darxton.ru

MSD

LSD

Настройка ID ведомого устройства в драйверах серии EM3E может быть произведена тремя способами:

- При помощи поворотных переключателей: при установленном нулевом значении 2151h пользователь может установить ненулевое значение при помощи двух поворотных переключателей. EtherCAT ID драйверов представляет собой шестнадцатеричное значение, которое определяется положением поворотных переключателей MSD и LSD. Например, при MSD=A и LSD=8 в десятичной форме ID=168. EtherCAT ID адрес активируется после перезагрузки устройства.
- При помощи чтения EtherCAT-контроллера ведомого устройства (ESC): ведущее устройство может автоматически настроить ID из адреса 0004h энергонезависимой памяти ESC, если значение объекта 2051h равно 0, и оба поворотных переключателя установлены в нулевое положение. Установленное значение ID подключенного устройства вступит в силу после перезагрузки.
- При помощи словаря объектов: при значении объекта 2151h, равном 0, значение адреса 2150h будет значением ID ведомого устройства, и вступит в силу после сохранения параметров и перезагрузки.

6.2. Для драйверов ЕМЗЕ-552Е /556Е/870Е

8-битные DIP-переключатели SW1-SW7 используются для установки идентификатора ведомого устройства, SW8 используется для самопроверки.

6.2.1. SW1-SW7

Идентификатор ведомого устройства можно установить тремя способами:

2151h	2150h	DIP	Slave ID
0	Чтение ID	0~127	Установка DIP-переключателями SW1-SW7
1	Запись ID	-	Установка через запись значения в параметр 2050h
2	-	0	Настройка в EEPROM 0004h автоматически

Идентификатор ведомого устройства может быть установлен на значение, отличное от нуля, с помощью переключателей SW1-SW7 согласно таблице ниже.

Табл. 7. Установка Slave ID с помощью DIP-ключей SW1-SW7

ID	SW1	SW2	SW3	SW4	SW5	SW6	SW7
0	ON						
1	OFF	ON	ON	ON	ON	ON	ON
2	ON	OFF	ON	ON	ON	ON	ON
3	OFF	OFF	ON	ON	ON	ON	ON
126	ON	OFF	OFF	OFF	OFF	OFF	OFF
127	OFF						

Для активации идентификатора необходима перезагрузка (переподключение питания)! OFF=1, ON=0
ID = Sw(1*(1) + Sw(2*(2) + Sw

 $\mathsf{ID} = \mathsf{SW1*(1)} + \mathsf{SW2*(2)} + \mathsf{SW3*(4)} + \mathsf{SW4*(8)} + \mathsf{SW5*(16)} + \mathsf{SW6*(32)} + \mathsf{SW7*(64)}$

6.2.2. SW8

SW8 используется для самотестирования, при значении OFF у SW8 самотестирование отключено, при значении ON у SW8 самотестирование активируется, двигатель со скоростью 0.2 об/сек пробежит туда-сюда 5 кругов.