User's Manual

For

ACS806

Digital AC Servo Drive

Revision 1.0 ©2009 All Rights Reserved

Attention: Please read this manual carefully before using the drive!

3/F, Block 2, Nanyou Tianan Industrial Park, Nanshan Dist, Shenzhen, China

Tel: (86)755-26434369 Fax: (86)755-26402718

The content in this manual has been carefully prepared and is believed to be accurate, but no responsibility is assumed for inaccuracies.

Leadshine reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Leadshine does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights of others.

Leadshine's general policy does not recommend the use of its products in life support or aircraft applications wherein a failure or malfunction of the product may directly threaten life or injury. According to Leadshine's terms and conditions of sales, the user of Leadshine's products in life support or aircraft applications assumes all risks of such use and indemnifies Leadshine against all damages.

©2009 by Leadshine Technology Company Limited.

All Rights Reserved

Table of Contents

1. Introduction, Features and Applications	1
Introduction	1
Features	1
Applications	2
2. Specifications and Operating Environment	2
Electrical Specifications	2
Performance Specifications	2
Mechanical Specifications	3
Elimination of Heat	3
Operating Environment and Parameters	3
3. Connections	4
Connector Configuration	4
General Information	4
More about I/O Signals	6
ENA, PUL, DIR Input Circuits and Connections	7
RL, FL Input Circuits and Connections	8
Pend, ALM Output Circuits and Connections	9
A+, A-, B+, B-, Z+, Z- Output Circuit	9
Encoder and Hall Sensor Connections	10
RS232 Interface Connection	11
Typical Connections	11
4. Servo Setup	13
Install Encoder and Hall sensor	13
Prepare Power Supply	13
Regulated or Unregulated Power Supply	13
Selecting Supply Voltage	
Prepare Controller	14

System Connections and Noise Prevention
Wire Gauge14
Cable Routing15
Twisted Wires
Cable Shielding15
System Grounding16
Power Supply Connection
5. Tuning the Servo
Testing the Servo
Tuning the Servo
7.Using Tips
Change PPR by Electronic Gear
Position following Error Limit
Sequence Chart of Control Signals
Protection Functions
Over-current Protection
Over-voltage Protection
Under-voltage Protection
Phase Error Protection
Encoder or Hall Error Protection21
Limit Error Protection21
Position Following Error Protection21
Protection Indications
Maximum Pulse Input Frequency
8. Accessories
ACS806 Accessories and Connections
More Information about ACS806 Accessories24
APPENDIX
TWELVE MONTH LIMITED WARRANTY28
EXCLUSIONS

II

Contents

OBTAINING WARRANTY SERVICE	28
WARRANTY LIMITATIONS	28
SHIPPING FAILED PRODUCT	29

Tel: (86)755-26409254 III Website: www.leadshine.com

ACS806 Digital AC Servo Drive Manual Rev1.0

1. Introduction, Features and Applications

Introduction

Leadshine's fully digital AC servo drive ACS806 is developed with 32-bit DSP based on advanced control algorithm. Since its input commands are PUL/DIR signals, the users can upgrade stepping drives to the ACS806 without changing control systems. The ACS806 can offer high precision, high speed and high reliability performance, and widely used in inkjet printers, engraving machines, and etc. A built-in controller can be used for testing and tuning. PC based and handheld configuration & tuning tools can meet different tuning environments or requirements.

Features

- I Input: 18 80VDC,
- Peak Current: 18A, Continuous Current: 6 A (Max), 50 400 W
- I FOC-SVPWM technologies
- PC based and handheld configuration tools
- Electronic gear rate from 1/255 to 255
- Self-test function with trapezoidal velocity profile
- Support PUL/DIR and CW/CCW control signals
- I Opto-isolated, support single-ended and differential inputs
- I Encoder output
- I Following error lock range adjustable
- Over-voltage, over-current, encoder failure protections
- 10 latest failures self-record function
- I Small size, surface-mount technology

Tel: (86)755-26409254 1 Website: www.leadshine.com

Applications

Suitable for large and medium automation machines and equipments, such as inkjet printers, engraving machines, electronics manufacturing equipments, special NC machines, pick and place devices, packing devices, and so on. Particularly adapt to the applications require high speed, high precision, and low motor noise.

2. Specifications and Operating Environment

Electrical Specifications ($T_i = 25^{\circ}C/77^{\circ}F$)

Parameters	ACS806			
r arameters	Min.	Typical	Max.	Unit
Peak output current	0	-	18	A
Continue output current	0	-	6	A
Supply voltage	+18	-	+80	VDC
Logic signal current	7	10	16	mA
Pulse input frequency	0	-	600	kHz
Isolation resistance	500			ΜΩ
Current provided to encoder	-	-	100	mA

Performance Specifications (with ACM Series Servo Motors)

Position following error: +/-1 count

Velocity accuracy: +/-2rpm

Maximum acceleration speed (No Load): 80 rpm/ms²

I Input frequency up to 600 kHz

I Maximum speed: 4000 rpm

I Allowable low speed reaches1 rpm

Positioning accuracy:+/-1 count

I Suitable for 18 - 80 VDC AC servo motors

Mechanical Specifications (unit: mm[inch])

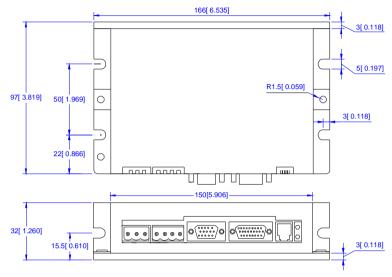


Figure 1: Mechanical specifications

Elimination of Heat

- I Drive's reliable working temperature should be $<70^{\circ}$ C[158°F], and motor working temperature should be $<80^{\circ}$ C[176°F].
- It is recommended to mount the drive vertically to maximize heat sink area.

Operating Environment and Parameters

Cooling	Natural cooling or Forced cooling	
	Environment	Avoid dust, oil fog and corrosive gases
	Ambient Temperature	0°C −50°C (32°F −122°F)
Operating Environment	Humidity	40%RH-90%RH
	Vibration	5.9m/s ² Max
Storage Temperature	-20°C −65°C (-4°F −149°F)	
Weight	Approx. 450g (15.88oz)	

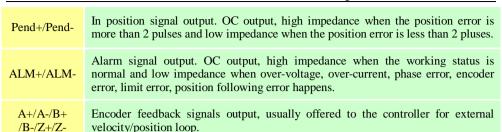
Tel: (86)755-26409254 2 Website: www.leadshine.com Tel: (86)755-26409254 3 Website: www.leadshine.com

3. Connections

Connector Configuration

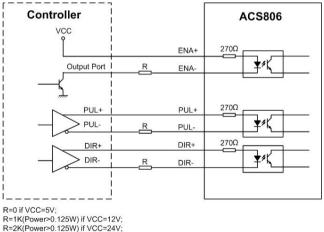
General Information

Digital & Analog I/O Connector			
Pin	Signal	Description	I/O
1	ENA+	Enable signal input +	I
2	ENA-	Enable signal input -	I
3	PUL+	Pulse signal input +	I
4	PUL-	Pulse signal input -	I
5	DIR+	Direction signal input +	I
6	DIR-	Direction signal input -	I
7	FL	Positive limit signal input	I
8	RL	Negative limit signal input	I
9	SGND	Signal ground	GND
10	Pend+	In position signal output+	O
11	Pend-	In position signal output-	O
12	ALM+	Alarm output signal+	O
13	ALM-	Alarm output signal-	O
14	NC	Not connected	-
15	NC	Not connected	-
16	NC	Not connected	-
17	FG	Ground terminal for shield	GND
18	SGND	Signal ground	GND
19	+5V	+5V@10mA power supply	O
20	A+	Encoder channel A+ output	O
21	A-	Encoder channel A- output	О


22	B+	Encoder channel B+ output	O
23	B-	Encoder channel B- output	О
24	Z+	Encoder channel Z+ output	O
25	Z-	Encoder channel Z- output	O
26	SGND	Signal ground	GND
		Halls & Encoder Connector	
Pin	Signal	Description	I/O
1	EA+	Encoder channel A+ input	I
2	EB+	Encoder channel B+ input	I
3	EGND	Signal ground	GND
4	HallW+	Hall sensor W+ input	I
5	HallU+	Hall sensor U+ input	I
6	FG	Ground terminal for shielded	GND
7	EZ+	Encoder channel Z+ input	I
8	EZ-	Encoder channel Z- input	I
9	HallV+	Hall sensor V+ input	I
10	HallV-	Hall sensor V- input	I
11	EA-	Encoder channel A- input	I
12	EB-	Encoder channel B- input	I
13	VCC	+5V @ 100 mA max.	O
14	HallW-	Hall sensor W- input	I
15	HallU-	Hall sensor U- input	I
		High Voltage Connector	
Pin	Signal	Description	I/O
1	PE	Motor case ground	GND
2	U	Motor phase U	O
3	V	Motor phase V	O
4	W	Motor phase W	O
5	Rbrake	Brake resistor connection (VDC-RBrake)	I
6	+Vdc	DC power Input (18-80VDC)	I
7	GND	Power Ground.	GND

RS232 Communication Connector			
Pin	Signal	Description	I/O
1	NC	Not connected	-
2	+5V	+5V power only for STU.	O
3	TxD	RS232 transmit.	O
4	GND	Ground.	GND
5	RxD	RS232 receive.	I
6	NC	Not connected	-

More about I/O Signals


Signal	Description	
ENA+/ENA-	Enable input signal. This signal used for enabling/disabling the drive. High level for enabling the drive and low level for disabling the drive. Usually left UNCONNECTED (ENABLED).	
PUL+/PUL-	Pulse input signal. In single pulse (pulse/direction) mode, this input represents pulse signal, each rising or falling edge active (software configurable); 4-5V when PUL-HIGH, 0-0.5V when PUL-LOW. In double pulse mode (pulse/pulse) , this input represents clockwise (CW) pulse, active at both high level and low level . For reliable response, pulse width should be longer than 0.85 μs . Series connect resistors for current-limiting when +12V or +24V used. The same as DIR and ENA signals.	
DIR+/DIR-	Directions input signal. In single-pulse mode, this signal has low/high voltage levels, representing two directions of motor rotation; in double-pulse mode (software configurable), this signal is counter-clock (CCW) pulse, active at both high level and low level. For reliable motion response, DIR signal should be ahead of PUL signal by 5μ s at least. 4-5V when DIR-HIGH, 0-0.5V when DIR-LOW.	
FL/RL	Positive or negative limit input signal. Use signal ground for reference. 0-0.5V is Low level input and 4-5V is High Level input. The active level can be set with configuration tools such as ProTuner, STU-ACS. If active at low level, FL/RL must be kept at high level for normal drive operation, and the drive will short-circuit the motor coils to stop the motor immediately when FL/RL turn to low level. If active at high level, FL/RL must be kept at low level for normal drive operation, and the drive will short-circuit the motor coils to stop the motor immediately when FL/RL turn to high level. Please select active at high level when RL/RL is not connected.	

ENA, PUL, DIR Input Circuits and Connections

eadshine Technology Co., Ltd.

The ACS806 has 3 differential logic inputs to accept Enable, Pulse and Direction control signals. These inputs are isolated to minimize or eliminate electrical noises coupled onto the control signals. Recommend use twisted wires and shielding cable for control signals to increase noise immunity in interference environments. Keep these wires far away from the power lines. In figure 2, input circuit for these control signals and connections to a typical motion controller is illustrated. Figure 3 illustrates connections to the controller with common-anode outputs.

R must be connected to control signal terminal.

Figure 2: Connections to controller with differential outputs

6 Tel: (86)755-26409254 Website: www.leadshine.com Tel: (86)755-26409254 Website: www.leadshine.com

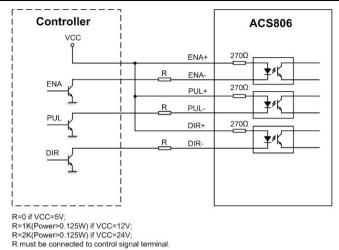


Figure 3: connections to controller with Common-Anode outputs

RL, FL Input Circuits and Connections

Recommend using the +5V supply output pin Digital & Analog I/O for FL/RL input.

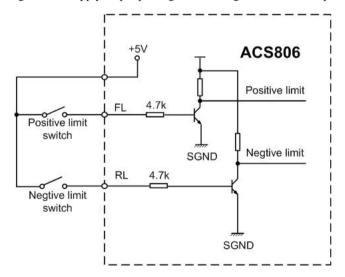
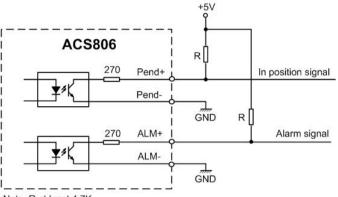



Figure 4: Input circuit and connections for RL and FL

Pend, ALM Output Circuits and Connections

Note: R at least 4.7K.

Figure 5: Output circuit and connection for Pend and ALM

A+, A-, B+, B-, Z+, Z- Output Circuit

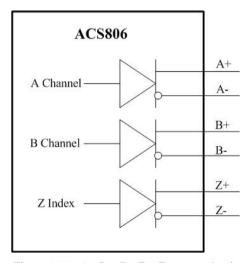


Figure 6: A+, A-, B+, B-, Z+, Z- output circuit

Tel: (86)755-26409254 8 Website: www.leadshine.com Tel: (86)755-26409254 9 Website: www.leadshine.com

Encoder and Hall Sensor Connections

The ACS806 can accept both incremental encoder and Hall Effect sensor inputs for motor shaft position feedbacks. Note that twisted-pair shielded cabling provides the best immunity in electrically noisy environments.

The ACS806 has the +5V power to supply the encoder & hall sensor. If the encoder and hall sensor drains less than 100mA, the ACS806 can supply them directly, and connect it as Figure 7. If the encoder drains more than 50mA, use an external DC supply and connect it as Figure 8.

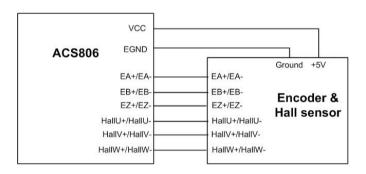


Figure 7: The ACS806 supplies the encoder directly

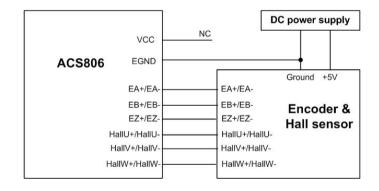


Figure 8: Using external DC power supply to supply the encoder

RS232 Interface Connection

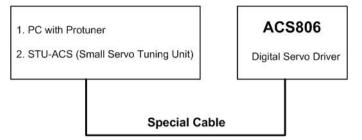


Figure 9: RS232 interface connection

Typical Connections

A typical connection of the ACS806 is shown as Figure 10. Please consult "Digital and Analog I/O" and "Encoder and hall sensor Connections" for more information about controller and encoder connections.

Tel: (86)755-26409254 11 Website: <u>www.leadshine.com</u>

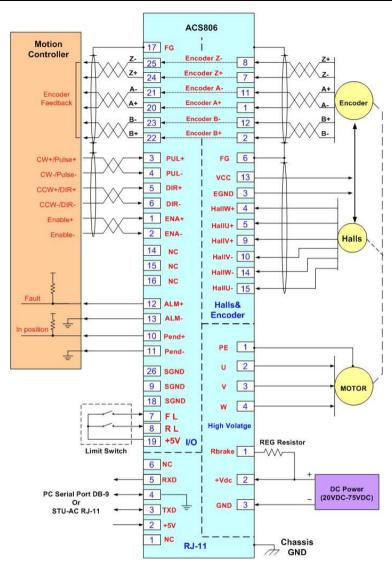


Figure 10: Typical connection of the ACS806

4. Servo Setup

Before you start the servo, you can follow the below steps.

Install Encoder and Hall sensor

Encoder and Hall sensor provide information of the motor shaft position and rotor magnetic field orientation. The output signals from the Hall sensor have absolute phase information which is used at motor startup. If your motor has no encoder and hall sensor, you must have an encoder (more than 200 lines) and hall sensor properly mounted on the motor before you start.

There are some modules which can output signals both for encoder and hall sensor. Please assemble the selected module according to its factory manual. Leadshine also offer ACM series AC servo motors for matching the ACS806. Please use shielded cables and separate encoder signal cable from interference sources, such as motor wires and power wires at least 5 cm.

Prepare Power Supply

Regulated or Unregulated Power Supply

Both regulated and unregulated power supplies can be used to supply the Drive. However, unregulated power supplies are preferred due to their ability to withstand current surge. If regulated power supplies (such as most switching supplies.) are indeed used, it is important to have large current output rating to avoid problems like current clamp, for example using 4A supply for 3A motor-drive operation. On the other hand, if unregulated supply is used, one may use a power supply of lower current rating than that of motor (typically $50\% \sim 70\%$ of motor current). The reason is that the Drive draws current from the power supply capacitor of the unregulated supply only during the ON duration of the PWM cycle, but not during the OFF duration. Therefore, the average current withdrawn from power supply is

considerably less than motor current. For example, two 3A motors can be well supplied by one power supply of 4A rating.

Selecting Supply Voltage

The ACS806 can actually operate within $+18 \sim +80 \mathrm{VDC}$, including power input fluctuation and back EMF voltage generated by motor coils during motor shaft deceleration. The rated voltage of the motor is an important parameter when selecting supply voltage. Generally speaking, do not use a power supply voltage more than 5 volts of the rated voltage of the motor. Higher voltage may cause bigger motor vibration at lower speed, and it may also cause over-voltage protection or even drive damage.

Prepare Controller

Prepare a controller with pulse and direction signals. However, the ACS806 has a built-in motion controller for self-test and Servo Tuning. The built-in motion controller can generate control signal with trapezoidal velocity profile.

System Connections and Noise Prevention

After finishing the above steps, you can connect your servo system. Before you start, make sure that the power is off. Connect your system according to previous connection diagrams, and pay attention to the following tips when wiring.

Wire Gauge

The smaller wire diameter (lower gauge), the higher impedance. Higher impedance wire will broadcast more noise than lower impedance wire. Therefore, when selecting the wire gauge, it is preferable to select lower gauge (i.e. larger diameter) wire. This recommendation becomes more critical as the cable length increases. Use the following table to select the appropriate wire size to use in your application.

Current (A)	Minimum wire size (AWG)
10	#20
15	#18
20	#16

Cable Routing

All content sensitive signal wires should be routed as far away from motor power wires and Drive power wires as possible. Motor power and Drive power wires are major sources of noise and can easily corrupt a nearby signal. This issue becomes increasingly important with longer motor power and Drive power wires lengths.

Twisted Wires

Twisted wires effectively increasing noise immunity. The successive twists eliminate noise transients along the length of the cable. Both signal cables and power cables should be of the twisted and shielded type. Differential signal wires should be twisted as a pair. The combination of twisted pair wires and a differential signal significantly adds to noise immunity. Power wires should be twisted as a group along with the ground (or chassis) wire, if available.

Cable Shielding

All signal wires should be bundled and shielded separately from Drive power and motor power wires. Power wires should also be bundled and shielded. When grounding a shield, the rule-of-thumb is to do so at the 'source' of power while leaving the other shield end open. For example, in the case of motor power wires, this would be the drive side. Ideally, twisted pairs should be individually shielded and isolated from the outer shield, which encompasses all wires within the cable. However, since this type of stringent shielding practice is often not required, typical cables do not provide isolation between inner and outer shields.

Tel: (86)755-26409254 14 Website: www.leadshine.com Tel: (86)755-26409254 15 Website: www.leadshine.com

System Grounding

Good grounding practices help reduce the majority of noise present in a system. All common grounds within an isolated system should be tied to PE (protective earth) through a 'SINGLE' low resistance point. Avoiding repetitive links to PE creating ground loops, which is a frequent source of noise. Central point grounding should also be applied to cable shielding; shields should be open on one end and grounded on the other. Close attention should also be given to chassis wires. For example, motors are typically supplied with a chassis wire. If this chassis wire is connected to PE, but the motor chassis itself is attached to the machine frame, which is also connected to PE, a ground loop will be created. Wires used for grounding should be of a heavy gauge and as short as possible. Unused wiring should also be grounded when safe to do so since wires left floating can act as large antennas, which contribute to EMI.

Power Supply Connection

NEVER connect power and ground in the wrong direction, because it will damage the ACS806 drive. The distance between the DC power supply of the drive and the drive itself should be as short as possible since the cable between the two is a source of noise. When the power supply lines are longer than 50 cm, a $1000\mu F/100V$ electrolytic capacitor should be connected between the terminal "GND" and the terminal "+VDC". This capacitor stabilizes the voltage supplied to the drive as well as filters noise on the power supply line. Please note that the polarity can not be reversed.

It is recommended to have multiple drives to share one power supply to reduce cost if the supply has enough capacity. To avoid cross interference, **DO NOT** daisy-chain the power supply input pins of the drives. Instead, please connect them to power supply separately.

5. Tuning the Servo

Testing the Servo

You may wish to secure the motor so it can't jump off the bench. Turn on the power supply, the green (Power) LED will light. The ACS806 has default parameters stored in the drive. If the system has no hardware and wirings problem, the motor should be locked and the drive should be ready.

If the motor jumps slightly and the red LED immediately turns on (flickers), then either the motor or the encoder is wired in reversal. Open the tuning software ProTuner and check drive status by clicking **Err_check**. If it's **Phase Error**, then reversal motor wires or exchange encoder inputs and try again. If it's **Encoder Error**, please check encoder and its wirings, and then try again. If it still doesn't work after you followed all of the previous steps, please contact us at tech@leadshine.com.

If the red LED is off and the motor is normal, then you can start to tune the servo with selected tool. PC based tuning software **ProTuner** and handheld small servo tuning unit **STU** are available for the ACS806.

Tuning the Servo

A servo system is error-driven. The "Gain" of the system determines how hard the servo tries to reduce the error. A high-gain system can produce large correcting torques when the error is very small. A high gain is required if the output is required to follow the input faithfully with minimal error.

A servo motor and its load both have inertia, which the servo amplifier must accelerate and decelerate while attempting to follow a change at the input. The presence of the inertia will tend to result in over-correction, with the system oscillating beyond either side of its target. It's called UNDER DAMPED status. See Figure 11. This oscillation must be damped, but too much damping will cause the

Tel: (86)755-26409254 16 Website: <u>www.leadshine.com</u> Tel: (86)755-26409254 17 Website: <u>www.leadshine.com</u>

response to be sluggish, namely cause the system to get into an OVER DAMPED state. When we tune a servo, we are trying to achieve the fastest response with little or no overshoot, namely get a CRITICALLY DAMPED response.

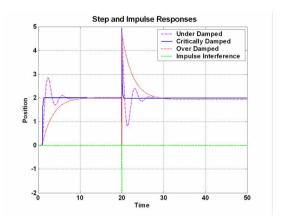


Figure 11: Step and impulse responses

As mentioned in previous contents, the ACS806 is a digital servo drive and its input command is PUL/DIR signal. In other words, step response just exists in each step command signal. For each step command signal is a very small movement, so OVER SHOOT and SETTLING TIME between each step are very small, causing you hardly can see a step response such as Figure 11, even if the SET POINT is a very large quantity and the acceleration is very high.

However, if you try to evaluate performances of the digital servo by investigating its position tracking-error or position following error, you may find it's much easier than investigating its step response. The easiest way to get a tracking-error or position following error response is to induce an impulse load on the motor. See Figure 11 at "time 20".

Leadshine offers a Windows based setup software **ProTuner** to its customers for evaluating servo performances. Small servo tuning unit **STU** (optional) is available too, and it's for field tuning without PC.

Tel: (86)755-26409254 18 Website: www.leadshine.com

Tuning servo systems formed by the ACS806 can be summarized as the following rules:

- 1. If servo system is UNSTABLE, then the first thing of tuning is to stabilize the system. You can increase **Derivative Gain** of **Position Loop** (Kd) or decrease **Proportional Gain** of Position Loop (Kp) or **Integral Gain** of Position Loop (Ki).
- 2. If servo system is UNDER DAMPED, then increase Kd or decrease Kp or Ki.
- 3. If servo system is CRITICALLY DAMPED, then stop tuning and download the parameter settings to the Drive's EEPROM.
- 4. If servo system is OVER DAMPED, then decrease Kd or increase Kp or Ki.

7. Using Tips

Change PPR by Electronic Gear

PPR(pulses per revolution) is the counts/pulses to make motor move one turn. If the default PPR can not satisfy your application, a way to change it is setting electronic gear in ProTuner as shown in figure 50. You can set this parameter in the position tuning window by select **Tuning->PositionLoop->P_parameter**. For ACS806, the actual PPR can be calculated by the following formula:

$$PPR = \frac{4 \times Encoder_resolution \times CAM_deno\min ator}{CAM_numerator}$$

Position following Error Limit

The ACS806 will activate a position following error if position error between command and encoder feedback exceeds the setting limit value. To set the limit value, please select **Tuning->PositionLoop->P_parameter** and find the Position **FollowingErrLimit** edit box. See figure 50.

Tel: (86)755-26409254 19 Website: www.leadshine.com

Sequence Chart of Control Signals

In order to avoid some fault operations and deviations, PUL, DIR and EN should abide by some rules, shown as the following figure:

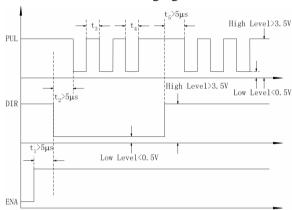


Figure 51: Sequence chart of control signals

Notes:

- a) t₁: EN must be ahead of DIR by at least 5 μs. Usually, ENA is NC (not connected). See **Connections** section for more information.
- b) t₂: DIR must be ahead of PUL active edge by at least 5 μs to ensure correct direction.
- c) t₃: Pulse width not less than 0.85 μs;
- d) t_4 : Low level width not less than 0.85 μ s.

Protection Functions

To improve reliability, the drive incorporates some built-in protection functions. The ACS806 uses one RED LED to indicate what protection has been activated. The periodic time of RED is 5 s (seconds), and how many times the RED turns on indicates what protection has been activated. Because only one protection can be displayed by RED LED, so the drive will decide what error to display according to their priorities. See the following **Protection Indications** table for displaying

priorities.

Over-current Protection

Protection will be activated when continuous current exceeds 24A, and RED LED will turn on once within each periodic time (5 s).

Over-voltage Protection

When power supply voltage exceeds 90 ± 1.5 VDC, protection will be activated and RED LED will turn on twice within each periodic time (5 s).

Under-voltage Protection

When power supply voltage is lower than 18 ± 1.5 VDC, protection will be activated and RED LED will turn on three times within each periodic time (5 s).

Phase Error Protection

Motor power lines wrong & not connected and encoder or hall sensor feedback signals wrong connected will activate this protection. RED LED will turn on four times within each periodic time (5 s).

Encoder or Hall Error Protection

No encoder feedback signals or wrong encoder/hall sensor feedback signals will activate this protection. RED LED will turn on five times within each periodic time (5 s).

Limit Error Protection

Protection will be activated when the positive or negative limit input in FL or RL pin is active. RED LED will turn on six times within each periodic time (5 s).

Position Following Error Protection

When position following error reaches Position Following Error Limit parameter setting in the drive, this protection will be activated. RED LED will turn on seven times within each periodic time (5 s). Note that wrong motor connection will cause this protection too. Please check your motor connection if this protection is activated

Tel: (86)755-26409254 20 Website: <u>www.leadshine.com</u> Tel: (86)755-26409254 21 Website: <u>www.leadshine.com</u>

at the startup.

<u>Attention:</u> Since there is no protection against power leads (+, -) reversal, it is critical to make sure that power supply leads correctly connected to drive. Otherwise, the drive will be damaged instantly.

Protection Indications

c	Time(s) of ON	Sequence wave of RED LED	Description
1 st	1		Over-current protection
2 nd	2		Over-voltage protection
3 rd	3		Under-voltage protection
4 th	4		Phase error protection
5 th	5		Encoder or Hall error protection
6 th	6		Limit error protection
7 th	7		Position following error protection

Maximum Pulse Input Frequency

Maximum Pulse Input Frequency is the highest frequency at which the drive can interpret encoder feedback. To convert this frequency to RPM, use the following formula:

$$RPM \text{ (max)} = \frac{(Max \quad Pulse \quad Input \quad Frequence) \times 60}{Pulse \quad per \quad resolution}$$

8. Accessories

ACS806 Accessories and Connections

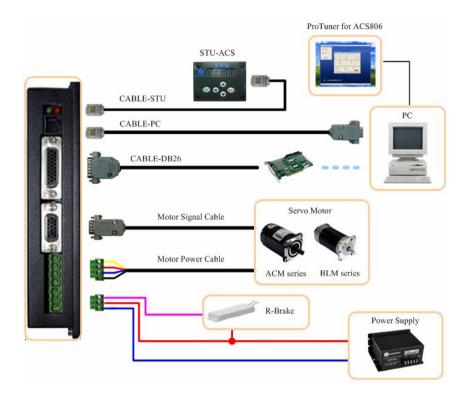


Figure 50: ACS806 accessories and connections

Tel: (86)755-26409254 22 Website: www.leadshine.com Tel: (86)755-26409254 23 Website: www.leadshine.com

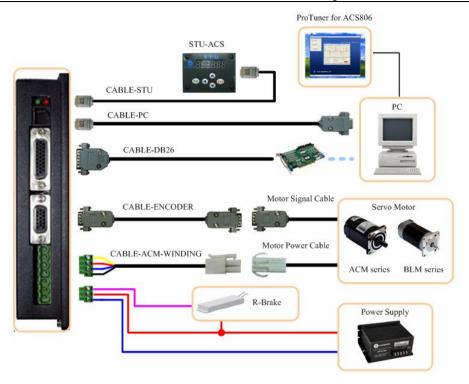
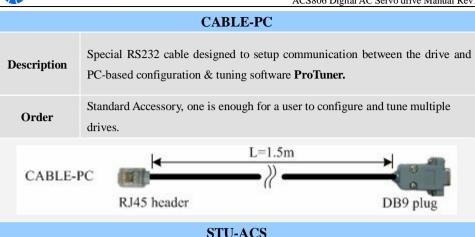
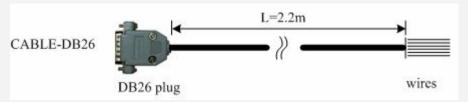



Figure 53: ACS806 accessories and connections with extended cable

More Information about ACS806 Accessories

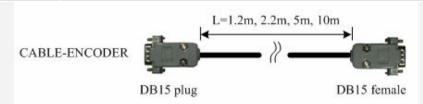
ProTuner		
Description	PC-based configuration & tuning software.	
Order	Order Standard Accessory, user can download from Leadshine website for free.	

2101102				
Description	Handheld configuration & tuning unit.			
Order	Optional Accessory, one is enough to configure and tune multiple drives.			



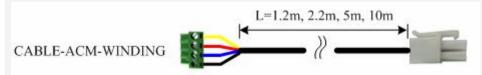
CABLE-STU						
Description	Special RS232 cable designed to setup communication tuning unit STU-ACS.	ation between drive and				
Order	One STU-ACS needs at least one.					
CABLE-STU L=1.5m RJ45 header RJ45 header						

Male connector



CABLE-DB26 Connector and cable for control signals include ENA+, ENA-, PUL+, PUL-, DIR+ and DIR-. Order Standard Accessory, one driver needs at least one.

	Pin	Color	Signal	Description
Wires	1	Green	ENA+	Enable signal input +
	2	Black	ENA-	Enable signal input -
	3	Red	PUL+	Pulse signal input +
	4	Yellow	PUL-	Pulse signal input -
	5	Blue	DIR+	Direction signal input +
	6	White	DIR-	Direction signal input -
	17	-	FG	Ground terminal for shielded


CABLE-ENCODER Description Extended cable for the feedback wires between the driver and servo motor. Optional Accessory, Leadshine provides 1.2m, 2.2m, 5m, 10m cable for user selection. Users can select the proper length according to their needs.

Tel: (86)755-26409254 26 Website: www.leadshine.com

CABLE-ACM-WINDING Extended cable for power leads between the drive and Leadshine ACM series AC servo motor. Order Optional Accessory, Leadshine provides 1.2m, 2.2m, 5m, 10m cable for user selection. Users can select the proper length according to their needs.

4 pin header

Wires	Pin	Color	Signal	Description
	1	Yellow	PE	Motor case ground
	2	Red	U	Motor phase U
	3	Blue	V	Motor phase V
	4	Black	W	Motor phase W

Tel: (86)755-26409254 27 Website: www.leadshine.com

APPENDIX

TWELVE MONTH LIMITED WARRANTY

Leadshine Technology Co., Ltd. warrants its products against defects in materials and workmanship for a period of 12 months from shipping date. During the warranty period, Leadshine will either, at its option, repair or replace products which proved to be defective.

EXCLUSIONS

The above warranty shall not apply to defects resulting from: improper or inadequate handling by customer; improper or inadequate customer wiring; unauthorized modification or misuse; or operation beyond the electrical specifications of the product and/or operation beyond environmental specifications for the product.

OBTAINING WARRANTY SERVICE

To obtain warranty service, a returned material authorization number (RMA) must be obtained from customer service at e-mail: tech@leadshine.com before returning product for service. Customer shall prepay shipping charges for products returned to Leadshine for warranty service, and Leadshine shall pay for return of products to customer.

WARRANTY LIMITATIONS

Leadshine makes no other warranty, either expressed or implied, with respect to the product. Leadshine specifically disclaims the implied warranties of merchantability and fitness for a particular purpose. Some jurisdictions do not allow limitations on how long and implied warranty lasts, so the above limitation or exclusion may not apply to you. However, any implied warranty of merchantability or fitness is limited

to the 12-month duration of this written warranty.

SHIPPING FAILED PRODUCT

If your product should fail during the warranty period, e-mail customer service at tech@leadshine.com to obtain a returned material authorization number (RMA) before returning product for service. Please include a written description of the problem along with contact name and address. Send failed product to distributor in your area or: Leadshine Technology Co., Ltd. Floor 3, Block 2, Tianan Industrial Park, Nanshan Dist, Shenzhen, China. Also enclose information regarding the circumstances prior to product failure.

Tel: (86)755-26434369 28 Web site: www.leadshine.com Tel: (86)755-26409254 29 Website: www.leadshine.com